4L 3s refers to the structure of moment of symmetry scales with generators ranging from 1\4edo (one degree of 4edo, 300¢) to 2\7edo (two degrees of 7edo, or approx. 342.857¢). The spectrum looks like this:
Generator
Tetrachord
g in cents
2g
3g
4g
Comments
1\4
1 0 1
300.000
600.000
900.000
0.000
8\31
7 1 7
309.677
619.355
929.023
38.71
Myna is around here
7\27
6 1 6
311.111
622.222
933.333
44.444
6\23
5 1 5
313.043
626.087
939.13
52.174
5\19
4 1 4
315.789
631.579
947.368
63.158
L/s = 4
9\34
7 2 7
317.647
634.294
951.941
70.588
Hanson/Keemun is around here
pi 1 pi
319.272
638.545
957.817
77.089
L/s = pi
4\15
3 1 3
320.000
640.000
960.000
80.000
L/s = 3
e 1 e
321.6245
641.249
964.874
86.498
L/s = e
11\41
8 3 8
321.951
643.902
965.854
87.805
29\108
21 8 21
322.222
644.444
966.667
88.889
18\67
13 5 13
322.388
644.776
967.364
89.522
7\26
5 2 5
323.077
646.154
969.231
92.308
Orgone is around here
3\11
2 1 2
327.273
654.545
981.818
109.091
Boundary of propriety (generators
larger than this are proper)
√3 1 √3
330.217
660.434
990.651
120.868
8\29
5 3 5
331.034
662.069
993.013
124.138
21\76
13 8 13
331.579
663.158
994.739
126.316
34\123
21 13 21
331.707
663.415
995.122
126.829
Unnamed golden temperament
13\47
8 5 8
331.915
663.83
995.745
127.66
pi 2 pi
332.3165
664.633
996.9495
129.266
5\18
3 2 3
333.333
666.667
1000.000
133.333
Optimum rank range (L/s=3/2)
7\25
4 3 4
336.000
672.000
1008.000
144.000
9\32
5 4 5
337.5
675
1012.5
150
Sixix
11\39
6 5 6
338.462
676.923
1015.385
153.846
Sixix
13\46
7 6 7
339.130
678.261
1017.391
156.522
(17/14)^3=9/5
2\7
1 1 1
342.857
685.714
1028.571
171.429
There are two notable harmonic entropy minima: hanson/keemun, in which the generator is 6/5 and 6 of them make a 3/1, and myna, in which the generator is also 6/5 but now 10 of them make a 6/1 (so no 4/3's or 3/2's appear in this scale).
larger than this are proper)